Simulation study to evaluate fidelity of continuous pulse oximetry recording in the electronic health record

Diane Dao, MD, MPH; Olivia Nelson, MD; Allan F. Simpao, MD, MBI; Jonathan M. Tan, MD, MBA, MPH; Jack O. Wasey, BMBCH, MA, MSci; Aaron Masino, PhD; Richard Tsui, PhD; James Scott; Muhammad Saeed; Larry Soberman; Michael Hamid; Mary B. Bartko; Jorge A. Gálvez, MD, MBI

1. Dept. of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine
2. Dept. of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia (CHOP)

Abstract ID: 201111212750149-1687

Introduction

Patients undergoing general anesthesia are prone to rapid physiologic changes. Electronic health records (EHR) capture measurements from physiologic monitors at regular intervals, but pulse oximetry data is dynamic. The EHR data sampling rate can fail to capture transient hypoxic events. Our study aims to examine the impact of a 1-minute EHR data sampling rate. Our hypothesis is that the EHR does not always record transient hypoxic events.

Methods

Vital sign simulator (VSS) tests were conducted in a biomedical engineering laboratory at the Children’s Hospital of Philadelphia.

- The VSS generated a continuous pulse oximetry waveform recorded across the AIMS continuum (see Figure 1).
- Transient hypoxemia was simulated by altering oxygen saturation (SpO2) between 100% and 40% every 30 seconds.
- A digital timer was synchronized with the EHR to guide the simulation scenarios.
- Scenarios were video recorded with an analog timer shown next to the monitor display.

Simulation protocol:

- SpO2 was set to 100% for 30 seconds, then 40% for 30 seconds.
- The sequence was repeated over 4 minutes.
- Four sequences were completed with a 10-second frame shift for each subsequent recording.
- Continuous pulse oximetry data from the monitor were transcribed from the video recording in 1-second intervals by a data collection researcher.
- Data was then linked to collated MDI data (10-second intervals) and EHR data at 1-minute intervals (see Table 1)

Results

- Table 1 demonstrates data granularity and fidelity across the AIMS continuum.
- An approximately 8-to 10-second delay occurred between simulated hypoxemia and monitor-recorded hypoxemia.
- Transient hypoxemia episodes lasting up to 30 seconds can be missed when recording EHR data at 1-minute intervals.
- MDI-recorded hypoxemia episodes were shorter than simulated hypoxemia episodes.

Discussion

- Patients under anesthesia may have abrupt alterations in vital signs, such as hypoxemia.
- Acute changes in vital signs may not be accurately captured with 1-minute recording intervals seen in the AIMS record.
- The MDI data reflects greater data granularity in the pulse oximeter simulator than the AIMS record.
- MDI: frequency of 1 measurement per every 10 seconds.
- AIMS: frequency of 1 measurement per minute.
- High frequency data can improve the identification of acute events.
- AIMS data is useful for research, machine learning, safety event analysis, and quality improvement initiatives.
- This simulation demonstrates the importance of data granularity to capture a patient’s vital signs with high fidelity and frequency.
- Accurate automated documentation systems are paramount to capture clinical interventions performed during patient care.

Summary

This experimental simulation testing for hypoxemia demonstrates the importance of physiologic data granularity and fidelity across the AIMS.

Citations


For more information or questions, please contact Diane Dao, MD, MPH; ditdaos5@gmail.com; diane.dao@pennmedicine.upenn.edu