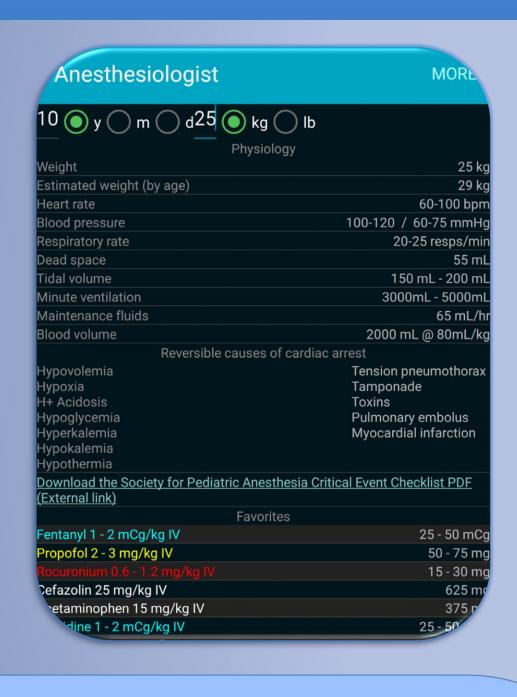


UNIVERSITY SCHOOL OF MEDICINE


When are we operating on kids? A potentially simple intervention to improve outcomes in developing countries. Vikas O'Reilly-Shah, MD, PhD; George Easton, PhD; Scott Gillespie, MS Departments of Anesthesiology, Information Systems & Operations Management, and Pediatrics Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. Email: voreill@emory.edu

Introduction

According to the Lancet Commission on Global Surgery, over 5 billion people have deficient access to basic surgical and anesthetic care. - The rapid global adoption of mobile health (mHealth) smartphone apps by healthcare providers provides opportunities to study global medical practice patterns, track access to care, and disseminate best practice information. App analytics, combined with in-app demographic surveys, can provide powerful tools for the collection of data in these areas.

Methods

- We studied users of a free anesthesia calculator app used in nearly every country in the world.[1] (Screenshot and Fig 1 global app penetration, right)
- We combined traditional app analytics with inapp surveys to collect user demographics and feedback. Chi-square tests were used for statistical comparison, using Holm's method to correct for multiple comparisons.

Results

- Data on ~617k patient age entries from 48,034 subjects in 212 countries. Most app uses were associated with the care of pediatric patients: ~147k (24%) of patient records were less than one month old, and ~465k (75%) were less than twelve years old (Table 1).
- We observed significant differences in age of the patients for which the app was consulted as a function of country income level. Specifically, the proportion of neonates, infants, and toddlers was higher in lower income countries (Table 1).
- We also observed significant differences in the hour of the day when the app was used; for neonates, infants, and toddlers, app uses were observed at a significantly higher rate in the evenings and at night in lower income countries.
- In particular, the app was consulted at a substantially higher rate for neonatal patients in lower middle income countries. Except for low vs lower-middle income in all categories, all pairwise comparisons were statistically significant at the 0.005 significance level.

	Low income		Lower middle income		Upper middle income		High income		Total	
	N	%	Ν	%	Ν	%	N	%	N	%
Neonate (<= 1 mo)	4317	25.5%	49184	27.0%	44641	21.6%	48804	23.1%	146946	23.8%
Infant (1 mo - 1 yr)	2827	16.7%	25819	14.2%	28506	13.8%	23157	11.0%	80309	13.0%
Toddler (1 - 3)	1845	10.9%	18422	10.1%	22252	10.8%	24940	11.8%	67459	10.9%
Child (3 - 12)	3962	23.4%	46000	25.2%	57942	28.1%	62147	29.5%	170051	27.6%
Teenager (12 - 18)	551	3.3%	6184	3.4%	7158	3.5%	7557	3.6%	21450	3.5%
Adult (> 18)	3435	20.3%	36668	20.1%	45976	22.3%	44393	21.0%	130472	21.2%
Total	16937		182277		206475		210998		616687	
Proportion of Total Cases By Income	2.7%		29.6%		33.5%		34.2%			

Fig 1: Global app penetration.

Conclusions

- Country income level appears to be an important predictor of the use of mHealth clinical decision support.
- This may suggest higher need for decision support in the care of this vulnerable population.
- There is good evidence that nighttime procedures are associated with increased complication rates and reduced efficiency.[2–4] The increased rate of evening and nighttime procedures in lower income countries is potentially a very easy target for intervention in improving outcomes.

Table 1: Proportion of cases by country income level and by age of patient.

Table 2: Time of day that the app was consulted for care of neonatal, infant, and toddler age patients.

	Da 6AM -			ning - <mark>8PM</mark>	Night 8PM - 6AM	
	N	%	N	%	N	%
		Neona	ite (< 1 mo)			
Low income	2908	67. <mark>4</mark> %	739	17.1%	670	15.5%
Lower middle income	28875	58.7%	8841	18. <mark>0</mark> %	11468	23.3%
Upper middle income	30 <mark>57</mark> 8	68. <mark>5%</mark>	7116	15.9%	<mark>6947</mark>	<mark>15.6%</mark>
High income	34327	70.3%	7654	15.7%	<mark>6823</mark>	14.0%
		Infant	(1 mo - 1 yr)			
Low income	<mark>1853</mark>	65.5%	<mark>500</mark>	17.7%	474	16.8%
Lower middle income	16487	63.9%	4514	17.5%	4818	18.7%
Upper middle income	19535	68.5%	4413	15.5%	<mark>455</mark> 8	16.0%
High income	16 <mark>1</mark> 59	69.8%	3573	15.4%	3425	14.8%
		Todo	ller <mark>(1 - 3)</mark>			
Low income	1249	67.7%	320	17.3%	<mark>27</mark> 6	15.0%
Lower middle income	12363	67.1%	3026	16.4%	3033	16.5%
Upper middle income	16228	<mark>72</mark> .9%	<mark>2935</mark>	1 <mark>3.2%</mark>	<mark>308</mark> 9	<mark>13.9%</mark>
High income	18679	74.9%	3267	13.1%	2994	12.0%

