

University of Colorado

Impact of an Intraoperative Blood Transfusion Protocol on Perioperative Transfusion for Craniosynostosis

Melissa M. Masaracchia, MD¹ and Patrick G. Fernandez, MD¹

¹University of Colorado Department of Anesthesiology, Children's Hospital Colorado Section of Pediatric Anesthesiology

0.12

Background

- Children undergoing craniofacial reconstruction are at risk for substantial blood loss resulting in exposure to allogenic blood products
- Strict perioperative transfusion protocols have been shown to limit blood product exposure¹
- In 2016 we deployed strict intraoperative transfusion guidelines based upon clinical evidence identifying transfusion triggers and goals

Methods

- We queried our local data from the pediatric craniofacial surgery perioperative registry identifying children who underwent cranial vault surgery between 2013-2017
- Patients were divided into 2 cohorts: preprotocol and post-protocol based upon implementation of intraoperative transfusion guidelines on 11/1/16
- We extracted demographic and perioperative data with respect to transfusion outcomes
- Sub-analyses were conducted with respect to "simple" vs "complex" cranial vault reconstruction

Table 1: Patient Demographics

All Patients Pre (n=149) Post (n=54) P Value 0.5696 Age (months)* 9±11 11±20 Weight (kg)* 8±3 0.3778 8±2 Sex 49 (33%) 18 (33%) Female 100 (67%) 36 (67%) ماد۱۸

Iviale	100 (07 %)	30 (07 %)	
ASA Score**			
1	22 (15%)	15 (28%)	
2	105 (70%)	35 (65%)	
3	21 (14%)	4 (7%)	
4	1 (1%)	0 (0%)	

4	1 (1%)	0 (0%)	
Procedure**			0.3038
FOA/Anterior Vault	37 (25%)	17 (31%)	
Total Vault	4 (3%)	1 (2%)	
Open Strip/modified PI	101 (68%)	31 (57%)	
Endoscopic assisted	5 (3%)	5 (9%)	
Lefort III/monobloc	2 (1%)	0 (0%)	
Preoperative Hct (%)	37±3	36±3	0.0417
Intraop Lowest Hct (%)	25±4	24±3	0.0262
Antifibrinolytic**			0.0463

OS (days)*	4±2	4±1	0.1724
urgery Time (min)	122 (79, 178)	106 (83, 188)	0.93
Yes	133 (89%)	53 (98%)	
No	16 (11%)	1 (2%)	

^{*}Median and interquartile range. P value based on Wilcoxon rank-sum test

Intraoperative Transfusion Protocol

Give 10 mL/kg crystalloid bolus prior incision

Check baseline Hgb/Hct after initial crystalloid bolus

Goal Hgb throughout case and by case end = 8 g/dL
Transfuse aliquots of 5 mL/kg PRCBs as dictated by this goal

Follow Hgb/Hct every 30-60 minutes			
1 Ollow Figuri Ict every 30-00 Hilliutes	Pre	Post	Р
Consider albumin (All Patients	(n=149)	(n=54)	Value
Consider vasopAges(months)*ort	9±11	11±20	0.5696

Results

Table 2: Intraoperative Transfusion Outcomes

All Repairs	Pre (n=149)	Post (n=54)	% Change
PRBC transfusion			
No	13 (9%)	7 (13%)	
Yes	136 (91%)	47 (87%)	-4
PRBC (mL)	131 (106, 220)	114 (82, 150)	-13
PRBC (mL/kg)	18 (13, 26)	14 (10, 21)	-22
Simple Repairs	Pre (n=106)	Post (n=36)	% Change
PRBC transfusion			
No	11 (10%)	7 (19%)	
Yes	95 (90%)	29 (81%)	-10
PRBC (mL)	124 (100, 181)	104 (74, 121)	-16
PRBC (mL/kg)	17 (11, 25)	14 (10, 17)	-18
Complex Repairs	Pre (n=43)	Post (n=18)	% Change
PRBC transfusion			
No	2 (5%)	0 (0%)	
Yes	41 (95%)	18 (100%)	5
PRBC (mL)	199 (119, 245)	133 (114, 313)	-33
PRBC (mL/kg)	20 (14, 31)	18 (13, 29)	-10

Continuous values are medians and interquartile ranges.

Conclusions

- A strict intraoperative transfusion protocol led to reduced allogenic blood product exposure
- The impact of our protocol was greater in simple craniosynostosis compared to complex repairs
- Lack of strict adherence to our protocol likely limited the magnitude of its impact

Implications

- Our data supports the use of perioperative transfusion protocols to limit allogenic blood exposure in children
- Future investigation should include evaluation of how best to ensure adherence to a protocol

References

- Stricker PA et al. Effect of transfusion guidelines on postoperative transfusion in children undergoing craniofacial reconstruction surgery. Pediatr Crit Care Med. 2012. 13(6):e357-e362
- 2. Stricker PA et al. Perioperative Outcomes and Management in Pediatric Complex Cranial Vault Reconstruction: A Multicenter Study from the Pediatric Craniofacial Collaborative Group. Anes. 2017; **126:** 276-287

Authors have no disclosures

^{**}Fisher's exact test