

A High Baseline Psycho-Somatic Symptom Profile Predicts Persistent Pain at One Year following Spine Fusion in Children

Sejal K Virani MD, Shobha Malviya MD, Alan R Tait PhD, Michelle S Caird MD, Frances A Farley MD, Gertrude Ying Li MD, Monica Weber BSN, Terri Voepel-Lewis PhD, RN Department of Anesthesiology, Division of Pediatric Anesthesiology, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI

BACKGROUND

A high symptom profile was recently described in 30% of children with idiopathic scoliosis and was differentiated by higher depression, fatigue, pain interference, neuropathic pain and pain catastrophizing characteristics. This profile was associated with worse short-term pain outcomes after posterior spine fusion (PSF).¹ Importantly, many children who undergo PSF have persistent pain trajectories 1-5 years after surgery,²⁻³ yet it is unknown whether a high symptom profile, similar to that in children with chronic or centralized pain, predicts the long-term trajectory after PSF. This longitudinal study differentiated preoperative symptom profiles in children and examined whether a high symptom profile predicts ongoing pain and analgesic use 1 year after PSF.

METHODS

With IRB approval, written parental consent and child assent, children aged 10-17 years were surveyed before surgery and at 1 year after PSF. Baseline self-reported measures included:

- pain intensity (0-10 numeric scale), location(s), and duration
- neuropathic pain (painDETECT)
- Pain catastrophizing
- PROMIS measures of fatigue, depression, anxiety, and pain interference
 Perioperative and postoperative analgesic usage was recorded.
 Children were re-surveyed at 1 year regarding pain intensity, pain interference, neuropathic pain and analgesic use.

RESULTS

- 95 healthy children (75% female, 94% ASA 1-2) completed the study.
- Cluster analyses ultimately delineated two groups with a high measure of cohesion and separation in the model. These clusters were differentiated in order of contribution as shown in Figure 1.
- There were 28 children in the high symptom cluster and 67 children in the low symptom cluster.
- Table 1 describes the demographic and perioperative characteristics of these symptom groups.

	Low Symptom	High Symptom	
Promise Depression Importance 1.0	Median 0.07	Median 16.01	
Pain Catastrophizing Importance 0.91	Median 3.97	Median 24.01	
Pain Interference Importance 0.86	Median 3.04	Median 13.55	-
PROMIS Fatigue Importance 0.74	Median 3.04	Median 17.01	

- The High Symptom Cluster had significantly higher pain intensity, pain interference, and neuropathic pain at one year (p ≤ 0.005).
- A multivariable linear regression model showed that the symptom cluster independently predicted pain interference at one year controlled for other characteristics (Table 2).
- A mixed effect logistic regression model showed that, controlled for the other characteristics and hospital course, children in the High Symptom Cluster had a 50% higher probability of requiring ongoing analgesia (93% [95% CI 54.8, 99.3] vs. 43% [19.6, 69.9], p=0.001).

Table 2. Multivariable Linear Regression Model Results

	Beta [95% CI]	P Value
Age	0.39 [-0.38, 1.16]	0.315
Sex	-0.53 [-3.73, 2.67]	0.741
Body mass index	-0.17 [-0.41, 0.08]	0.178
Baseline widespread pain	-0.48 [-3.37, 2.40]	0.739
Intrathecal morphine used	0.47 [-4.75, 5.69]	0.857
Hospital morphine consumption	18.87 [-21.29, 59.03]	0.351
Average Hospital Pain Score	0.29 [-0.49, 1.06]	0.458
Spine levels fused	-0.36 [-1.10, 0.38]	0.332
Symptom cluster	-9.92 [-13.2, -6.63]	p<0.001

RESULTS (continued)

Table 1. Baseline and Surgical Characteristics of the Cluster Groups

	Low Symptom Cluster (n=67)	High Symptom Cluster (n=28)	MD or OR [95% CI]
Age (years)	14.03 ± 1.73	14.11 ± 1.97	0.08 [-0.73, 0.88], 0.849
BMI	21.22 ± 4.93	23.80 ± 5.27	2.6 [0.33, 4.83], 0.025
Female sex (vs. male)	48 (71.6%)	24 (86%)	0.42 [0.13, 1.38], 0.192
ASA 1-2 (vs. 3)	64 (95.5%)	25 (89.3%)	0.39 [0.07, 2.07], 0.355
Preop analgesic use [opioid use]	45 (67.2%) [0]	27 (96.4%) [3]	0.08 [0.01, 0.59], 0.002
Widespread pain (vs. none to local)	15 (22%)	12 (43%)	0.39 [0.15, 0.99], 0.044
Pain control method perioperatively Epidural Intrathecal morphine (vs. other) PCA	12 (17.9%) 50 (74.6%) 5 (7.5%)	5 (17.9%) 22 (78.6%) 1 (3.6%)	0.80 [0.28, 2.31], 0.682
Hospital morphine consumption (mg/kg/hr)	0.08 ± 0.06	0.07 ± 0.05	-0.01 [-0.04, 0.01], 0.369
Average hospital pain score (0-10)	4.6 ± 1.65	5.71 ± 1.82	1.10 [0.34, 1.86], 0.005
Spinal segments involved Thoracic only Thoracic and Lumbar	14 (20.9%) 53 (79.1%)	7 (25.0%) 21 (75.0%)	1.26 [0.45, 3.57], 0.660
Number of spinal levels fused	Median 11	Median 10	-0.57 [-1.4, 0.26], 0.136
Anesthesia duration (hrs)	5.90 ± 1.19	5.40 ± 1.05	-0.50 [-1.01, 0.01], 0.056
Hospital length of stay (hrs)	73.72 ± 20.22	75.00 ± 13.02	1.3 [-6.9, 9.5], 0.758

MD=Mean Difference; OR=Odds Ratio; CI=Confidence Interval

CONCLUSION

Findings show that children with higher psycho-somatic symptoms preoperatively may be at risk for persistent pain and analgesic use 1 year after surgery. Identifying such symptomology prior to surgery may help to strategize early interventions that could mitigate persistent postoperative pain after PSF.

REFERENCES

1. Voepel-Lewis T. Anesth Analg 2017;124:1594-602 2. Connelly M. *Spine* 2014;39:E174-E181 3. Sieberg CB. *J Pain*. 2013;14:1694-1702