Background

Pulmonary hypertension (PHT) is associated with significant anesthetic risks and major complications in children.

Effective pulmonary blood flow (CO_{FPBF}) has recently been validated for its ability to measure cardiac output (CO) in animals and children (1,2).

We have compared CO_{EPBF} with direct CO_2 Fick (CO_{Fick}) and invasive pulmonary artery flow probe (CO_{TS}), in a porcine model of hypoxia-induced selective pulmonary vasoconstriction.

$ELV \cdot (FACO_2^n - FACO_2^{n-1}) = EPBF \cdot \Delta t^n \cdot (CvCO_2 - CvCO_2^{n-1}) = EPBF \cdot \Delta t^n \cdot (CvCO_2^{n-1}) = EPBF \cdot \Delta t^n \cdot (C$ $CcCO_2^n$) – $VTCO_2^n$

The left side reflects the difference in CO₂ content in the lung between two breaths and the first term on the right side describes the circulatory supply of CO_2 in the alveolar compartment between two breaths.

ELV, effective lung volume (litre) containing CO₂at the end of expiration; EPBF, effective pulmonary blood flow (liter/min); n, current breath; n-1, previous breath; FACO₂, alveolar CO₂ fraction; CvCO₂, venous carbon dioxide content (litre/litreblood); CcCOⁿ₂, lung capillary CO₂ content (calculated from FACO₂); VTCOⁿ₂, volume (litre) of CO_2 eliminated by the current, nth, breath; Δ tⁿ, current breath cycle time (min)

Equation 1. Calculating effective pulmonary blood flow using mole balance

DC has been developed based on CO_2 elimination (VCO₂) by the lungs in ventilated patients and uses the Differential Fick's principle (1). By continuously cycling betweeen breaths with normal I:E relationship and breaths with expiratory pause, variations in EtCO₂ are created. These variations are proportional to pulmonary blood flow (Equation 1). This provides continuous breath-by-breath cardiac output monitoring.

Capnodynamic determination of cardiac output (effective pulmonary blood flow, EPBF) in pulmonary hypertension and inhaled nitric oxide treatment in pigs.

J Karlsson¹, M Wallin², M Hallbäck², PA Lönnqvist¹ ¹Karolinska Institutet & Karolinska University Hospital, ²R&D Marquet Critical Care; Stockholm, Sweden.

Methods

10 anaesthetized mechanically ventilated piglets (median weight 23.9 kg) were exposed to a hypoxic gas mixture -> selective pulmonary vasoconstriction. Pulmonary vasoconstriction was subsequently reversed with inhaled nitric oxide. Simultaneous recordings of CO_{FPBF}, CO_{Fick} and CO_{TS-}

FiO2/iNO

Fig1. Time plot CO. protocol. Median+/-range

Results

min (limits of agreement -1 and +0.5 L/min), mean percentage error of 25%. Overall bias between CO_{FPRF} and CO_{Fick} was -0.08 L/min (limits of agreement -0.8) and +0.7 L/min) and a mean percentage error of 24%. The concordance rate was 90% for CO_{FPRF} when compared with CO_{TS} using a 15% exclusion zone.

Overall bias between CO_{FPRF} and CO_{TS} was -0.25 L/

Conclusion

Estimation of cardiac output with CO_{FPRF} is interchangeable with the highly invasive gold standard reference methods CO_{Fick} and CO_{TS}. CO_{EPBE} appears to be an accurate tool for monitoring absolute values and changes in cardiac output during hypoxia, pulmonary hypertension and inhaled nitric oxide treatment.

<u>l 1.Hällsjö Sander C</u>1, <u>Hallbäck M, Wallin M, Emtell P, Oldner A, Björne H</u>. Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth. 2014; 112: 824-31. 2. Karlsson et al, Validation of capnodynamic determinations of cardiac output (Effective Pulmonary Blood Flow, EPBF) in anaesthetized children: a human and porcine study. In press BJA

delta CO_{TS} (l/min)

Figure 2. Four quadrant plot