The Significant Impact of Supraglottic Airway Devices on Neck Masses During Magnetic Resonance Imaging in Children: A Ten-Year Review

Vladislav Obsekov,1 Rebecca S. Isserman, MD,1,2 Jorge A. Galvez, MD, MBI,1,2 Allan F. Simpao, MD, MBI1,2

1. University of Pennsylvania; 2. Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP), PA, USA

BACKGROUND

• General anesthesia (GA) with an airway device is used for radiological studies in children to limit excessive motion and improve image quality.

• Scant literature exists describing the potential for devices such as supraglottic airways (SGAs) to cause in vivo magnetic resonance imaging (MRI) artifact and misdiagnosis.

• We studied how often SGAs affected the appearance of neck masses in children who received GA for MRIs at CHOP.

METHODS

• We queried CHOP databases for patients under 18 years of age who had neck MRIs with GA:
 1. At least one MRI with an SGA, and
 2. At least one MRI with either a natural airway or endotracheal tube (ETT).

• Two reviewers reviewed MRI images and reports to assess the impact of the SGA on neck masses.

RESULTS

Patients with a neck MRI with a SGA and at least one MRI with an ETT or natural airway	28
Patients without neck masses	10
Patients with an airway device change and neck masses that were in areas that a SGA could impact	12
Patients with a documented change in neck mass appearance	11

• Of the remaining six patients, three had a mass on the dorsal neck, and three patients had masses that were distal to the SGA’s tip.

DISCUSSION

• When an SGA is used in a patient with a neck mass, the mass’ appearance is almost always impacted.

• SGAs may affect the appearance of the submandibular, retropharyngeal and prevertebral cervical regions.

 o This creates the potential for diagnostic error and treatment issues.

• Our findings support avoiding SGAs in children who are undergoing imaging studies (and possibly radiation therapy) for neck masses.

REFERENCES

Images courtesy of FrontMed and Lynn Kuehn.