Optimal Ventilation of the Pediatric Patient in the OR

Jeffrey M. Feldman, MD, MSE

Division Chief, General Anesthesia
Dept. of Anesthesiology and Critical Care Medicine
Children’s Hospital of Philadelphia
Professor of Clinical Anesthesia
Perelman School of Medicine
University of Pennsylvania

Disclosures

Consulting
- Draeger Medical

Topics for Discussion

- Historical Perspective
- Technology Advances
- Ventilation Modes
- Monitoring to Optimize Ventilation

The Pediatric Challenge

- Small errors in the intervention can be significant with the potential for injury or inadequate effect
 - Ex: Fluid & Drug Administration
- Mechanical Ventilation
 - Small volume variations can be a significant percentage of intended volume
 » Hypo/Hyper ventilation
 » Volu/Barotrauma

Tidal Volume = 10-12 mls/kg

- 18 laparotomy patients, 24-87 yo
- Pressure Ventilation 15-20 cmH2O
- Decrease CO2 and Ewave pressures during mechanical ventilation
- Studied recruitment maneuvers

Traditional Anesthesia Machine

Set Volume and Delivered Volume are not Identical
Why Pressure Controlled Ventilation?

- Volume Controlled Ventilation inaccurate
 - Circuit Compliance
 - Fresh gas flow
 - Leaks
- Pressure Controlled Ventilation Worked
 - Tidal volume depends upon insp pressure and lung compliance
 - Independent of circuit compliance and fresh gas flow
 - Maximum volume capacity to achieve desired pressure

Modern Anesthesia Ventilator

- Technology Differences
 - Bellows
 - Piston
 - Volume Reflector
 - Blower
- GOAL: Accurate volume delivery to the airway independent of circuit compliance and fresh gas flow

Compliance & FGF Compensation
Safety & Compliance Compensation

- Limits of compensation
 - Compliance compensation adds volume to insure set volume delivered to airway
 - Changing circuit compliance after compliance test
 - Decreased circuit compliance – risk of hyperinflation
 - Increased circuit compliance – risk of hypoinflation
 - Most ventilators limit compensation volume
 - e.g., add humidifier, expand circuit

PERFORM LEAK AND COMPLIANCE TEST WITH THE CIRCUIT CONFIGURATION YOU INTEND TO USE

Dead Space & Mechanical Ventilation

- Definition:
 - Bidirectional flow but no gas exchange
 - Circle system: Patient side of the Y-piece
 - Wasted ventilatory effort
- Pediatric patients especially susceptible to increased dead space
 - Small changes in dead space can cause big changes in V_D/V_t
 - Apparatus dead space can be significant

Typical Apparatus Dead Space

Do I need an ICU Ventilator?

- Better Volume Delivery? No
- Better Pressure Delivery? No
- Advanced Modes of Ventilation? No
 - Supported vs Controlled
- Use of Nitric Oxide? No
- HFOV? Yes
- Disadvantages of the ICU ventilator
 - No anesthetic vapor
 - Transition to manual ventilation

Typical Apparatus Dead Space

What is the best Ventilation Mode?

- Volume?
- Pressure?
- Pressure Support?
- Other?

Small Volume Ventilation

The New England Journal of Medicine

NEJM 2000;342;1301.

LPV and the Anesthetized Patient

NEJM 2013;369;428.

LPV & Anesthetized Patient

- Randomized Prospective Study
 - Traditional (10-12 mls/kg no PEEP, Recr) v LPV (6-8 mls/Kg + PEEP/Recr)
 - 55 v 21 patients had one or more major pulm or extrapulmonary Cx within 7 days
 - Complications: Pneumonia, resp failure, sepsis
 - LOS 13 v 11 days

Implications for Children

- Lung protective ventilation beneficial in adults
 - Volume 6-8 mls/kg
 - Pressure Limit < 30 cmH2O
 - PEEP
 - Recruitment maneuver
- Most meaningful in “at risk” patients
- Accurate small volume delivery
 - Relies upon compliance compensation
 - Minimum volumes to 20 mls (3 kgs)

Making Sense of the Terms

- Controlled Modes
 - VCV: Volume Controlled Ventilation
 - PCV: Pressure Controlled Ventilation
 - Autoflow, PRVT, PCV-VG:
 - Pressure Controlled Ventilation Volume Guarantee
- Supported Modes
 - Pressure Support Ventilation
- Hybrid Modes
 - VCV/PS: Synchronized Volume Controlled Ventilation with Pressure Support
 - PCV/PS: Synchronized Pressure Controlled Ventilation with Pressure Support
Volume Controlled Ventilation

- **VOLUME CONSTANT**
 - Flow = Set Volume ÷ Set i-Time
- PRESSURE VARYs with lung compliance
 - Peak Pressure at end inspiration
- Ventilator does not know anything about lung compliance

Pressure Controlled Ventilation

- **VOLUME VARYs with lung compliance**
 - Peak flow set, flow changes with lung compliance
- PRESSURE CONSTANT
 - = Set Pressure ÷ Set i-Time
- Ventilator does not know anything about lung compliance

PCV and VCV Indications

- **VCV**
 - Preset tidal volume is desired
 - Leaks are unlikely
 - Control of pressure is not a priority
 - Pressure limit can protect against transient compliance changes e.g., cough, surgical maneuver
 - If you hit the pressure limit the set volume is not delivered!
- **PCV**
 - Control of pressure is desired?
 - Small patients < 3 kgs
 - Leaks e.g., uncuffed ETT, bronchopleural fistula
 - Underlying lung pathology i.e., heterogeneous compliance (ARDS)

PCV-VG or AUTOFLOW

- **VOLUME CONSTANT**
 - Peak flow set, flow changes with lung compliance
- PRESSURE CONSTANT
 - = Set Pressure ÷ Set i-Time
- Ventilator must learn lung compliance
- Measures relationship between volume and pressure
- Limited if frequent changes in lung compliance

Selecting the Ventilation Mode

- Volume is important
 - Lung protective ventilation
 - Small tidal volumes must be reliable
 - PEEP is important
- Excessive pressure should be avoided
 - Pressure limit protective but not a strategy
- Square wave pressure can improve gas exchange in difficult to ventilate patients
- New anesthesia ventilators facilitate this approach to ventilation
 - Accurate volume delivery
 - PRVT, Autoflow, PCV-VG

Pressure Support

- Flow and volume depend upon
 - Lung compliance
 - Patient Effort
- Physiologic Benefits
 - Reduced work of breathing
 - Improved Venous Return
 - Reduced atelectasis
Role of Pressure Support
- Facilitate use of spontaneous ventilation
 - Reduce work of breathing
 - Offset respiratory depressant effects
- Improved gas exchange
- Improve hemodynamics
- Titrate anesthetics e.g. narcotics
- Assess depth of anesthesia
- Emergence
 - Transition to spontaneous ventilation
 - Eliminate anesthetic agents

Respiratory Monitoring
- Patient safety
 - Circuit Problems - Disconnections, Leaks, incompetent valves, absorber problems
 - Airway integrity - Extubation, obstruction, endobronchial intubation
- Document ventilator performance
 - Is the ventilator performing as set?
- Guide clinician to the optimal ventilation strategy

Bedside Respiratory Monitoring
- Gas Exchange
 - Gold standard: Arterial Blood Gas Analysis
 - Inspired (and expired) oxygen concentration
 - Capnography: Time and volume based
 - Pulse oximetry
- Pulmonary Mechanics
 - Airway pressure
 - Exhaled tidal volume
 - Spirometry: P/V and F/V loops

Goals of Optimizing Ventilation
- Oxygenation
 - Maximum PaO2
 - Minimum FiO2
- CO2 Elimination
 - Acceptable PaCO2
- Lung Compliance
 - Maximum volume
 - Minimum pressure
- Are bedside monitors helpful to meet these goals?

Pulse Oximetry
- Convenient
- Measures saturation not partial pressure
- Cannot detect moderate oxygenation changes when using supplemental oxygen
- Useful to assess oxygenation changes at low FiO2

Pulse Oximetry
- Saturation v inspired oxygen curves

Ref: Janssen KG, ECMC 16:337, 2000
Capnography
- Convenient
- Well established
- Good monitor of airway integrity
- Limited utility for effectiveness of ventilation
 - Unpredictable arterial to end-tidal CO2 gradient
 - Small tidal volumes (decreased Vd/Vt) will influence the gradient
- Arterial blood gas analysis is required when control of carbon dioxide is essential

Lung Compliance
- Compliance ~ Volume/Pressure (mls/cmH2O)
- What Pressure to monitor?
 - Peak pressure
 - Plateau Pressure
 - Mean pressure
 - PEEP
- Pressure is generated by
 - Flow through a resistance
 - Volume filling a compliance
 - PEEP
- Volume Monitoring
 - Exhaled valve sensor
 - On Airway measurement

Compliance Assessment
- Dynamic Compliance
 - Determined by resistance and compliance
 - Influenced by external factors
 - Resistance: ETT, obstruction
 - Flow: Ventilator settings/exp volume mode
 - Dynamic Compliance
 - Can be estimated in absence of flow
 - Cdyn = Peak Pressure / Exhaled volume
- Static Compliance
 - Can be estimated in absence of flow
 - Cstatic = Plateau pressure / Exhaled volume

Continuous Spirometry
- Pressure/volume and Flow/volume Loops
- Breath to breath lung compliance
- No information on gas exchange
- New ventilator technology facilitates measurement
- Influenced by Ventilator mode

PV Loops and Ventilator Mode
- VCV v PCV
Optimal Ventilation Strategy

- Oxygen
 - Avoid 100% O2 without PEEP during induction and emergence
 - Consider ARM + PEEP when using 100% oxygen
- Small tidal volume (6-8 ml/kg) with PEEP is preferable
 - Proper use of compliance compensation essential
- Liberal use of PEEP during controlled ventilation
- Minimize dead space
- Volume Targeted Mode like Autoflow is desirable
- Consider spontaneous ventilation if pressure support is available

Optimal Ventilation Strategy (cont)

- Monitor to optimize ventilation
 - Pulse oximetry: Keep the FiO2 < 30%
 - Desaturation indicates oxygenation problem
 - Capnography: Acceptable ETCO2
 - Lung compliance: Maximum volume at minimum pressure
- If oxyhemoglobin saturation decreases
 - Do NOT just increase FiO2
 - Can ventilation be improved?
 - Alveolar Recruitment Maneuver and PEEP
 - Ventilation Mode: Square Pressure wave, increased i-Time
 - Supported spontaneous ventilation