Non-invasive, continuous blood pressure measurement using the CNAP™ monitor during bariatric surgery in adolescents

Hiromi Kako MD¹, Christopher McKee DO¹, Marc Michalsky MD², Joseph D. Tobias MD¹
¹Department of Anesthesiology and Pain Medicine, Nationwide Children’s Hospital and The Ohio State University, Columbus, Ohio
²Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, Ohio

Background

Background

- Blood pressure (BP) is one of the most important parameters and continuous BP monitoring is preferable in patients with co-morbid conditions and during major surgeries.
- The placement of an arterial cannula (AL) requires time, is an invasive procedure, and can occasionally result in serious complications.
- Standard oscillometric BP measurements with a cuff may be difficult in the severely obese surgical population (body mass index (BMI) ≥ 35 kg/m²) because of the shape and thickness of the arm.
- The CNAP™ Monitor (CNSystems, Graz, Austria) is a finger-mounted, continuous, non-invasive BP monitoring device, providing beat-to-beat pressure readings.
- There are limited data regarding the use of this device in severely obese adolescents undergoing bariatric surgery. We prospectively evaluated the accuracy of the CNAP™ device in patients undergoing bariatric intervention.

Methods

- IRB approved. Prospective, observational clinical study
- Patients undergoing laparoscopic vertical sleeve gastrectomy were eligible for inclusion.
- The CNAP™ finger cuff was attached on the opposite side of the AL.
- The arm cuff of the device was placed on the upper arm on the same side of the AL, except for 3 cases where the cuff was placed on the forearm.
- Systolic (sBP), diastolic (dBP), and mean arterial (MAP) pressure were captured from the AL and CNAP™ device every minute during anesthetic care.

Table 1: Patient demographics of the study cohort

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Male</th>
<th>Female</th>
<th>Age (years) (range)</th>
<th>Weight (kg) (range)</th>
<th>BMI (kg/M²) (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2:8</td>
<td>122±22</td>
<td>45±7.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are displayed as the mean ± SD or absolute values.

Table 2: BP measured by arterial line and CNAP™ monitor

Table 3: BP measured by arterial line and CNAP™ monitor

There were a total of 1,242 pairs of sBP, dBP, and MAP values.

<table>
<thead>
<tr>
<th>Difference between AL and CNAP values</th>
<th>Percentage of CNAP values ≤ 5 mmHg from AL value</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>sBP (mmHg)</td>
<td>14.5 ± 12.6 mmHg</td>
<td>29.2%</td>
</tr>
<tr>
<td>dBP (mmHg)</td>
<td>10.3 ± 8.5 mmHg</td>
<td>34.5%</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>10.6 ± 9.1 mmHg</td>
<td>34.9%</td>
</tr>
</tbody>
</table>

The difference was more than 10 mmHg (sBP, dBP, MAP) in 51.5%, 36.6%, and 41.5% of the values respectively.

Table 4: Results of the Bland-Altman analysis

<table>
<thead>
<tr>
<th>Bias</th>
<th>95% level of agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic BP</td>
<td>-34 to +41</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>-21 to +29</td>
</tr>
<tr>
<td>Mean arterial pressure</td>
<td>-22 to +31</td>
</tr>
</tbody>
</table>

Conclusions

As noted in previous studies, the sBP measurement was the least accurate when compared to the AL values. In the current cohort of patients, the differences of the BP values did not meet the criteria of the Association for the Advancement of Medical Instrumentation standards for non-invasive BP measurement (ANSI/AAMI SP10), which suggest a mean difference of ± 5 mmHg and a standard deviation of 8 mmHg. In particular, the difference of sBP seems to be beyond the clinically acceptable difference. However, in the absence of an invasive arterial cannula, the device offers significant advantages over conventional intermittent BP monitoring.

Disclosure

No author has a conflict of interest regarding any device employed in the study. The CNAP™ monitor used for the study was supplied free of charge by the company (CNSystems AG, Graz, Austria).

References