Low Sevoflurane Concentration Anesthesia Technique for Young Children Undergoing Adenoidectomy or Adenotonsillectomy

Yang Liu, MD., Stephen Stayer, MD., Dean Andropoulos, MD., Rahul Baijal, MD., Nick Carling MD., and Mehernoor Watcha, MD.,

Department of Pediatric Anesthesiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA

Background:
• There are concerns that inhalation anesthetics have a dose-related effect on the developing brain (1-2). In the absence of clear-cut evidence proving a neurotoxic effect from inhalation anesthetics, it may be prudent to reduce anesthetic gas exposure by utilizing alternative anesthetics in order to reduce exposure to neuro-apoptotic.
• Some anesthesiologists at the Texas Children’s Hospital (TCH) have used dexmedetomidine and remifentanil to this end in the high-risk pediatric population.
• Anesthetic gas exposures are quantified in MAC-hours, defined by the minimum alveolar concentration that prevents movement from a noxious stimulus in 50% of subjects (MAC) for 1 hour (3).

Method:
• IRB approved retrospective study
• Chart review of children less than 5 years old who had undergone adenoidectomy or tonsillectomy with/without adenoidectomy from June 1, 2012 to March 30, 2013
• Two groups:
 ❖ Standard sevoflurane concentration anesthesia (SSCA)
 ❖ Low sevoflurane concentration anesthesia (LSCA) with dexmedetomidine and remifentanil.
• Thirty patients (15 for adenoidectomy and 15 for tonsillectomy) in each anesthesia group were randomly chosen from the primary data pool of each anesthesia group.
• Data were collected from the automated anesthesia records. The recorded end-tidal sevoflurane concentration at 1 minute intervals was extracted from medical records along with the duration of the procedure.
• The MAC-hour exposure was calculated using the age-related MAC and duration of exposure.
• Student T-test was used to detect any significant differences between the two groups and Chi square was used for categorical value. P < 0.05 was considered statistically significant.

Result:
• There were no significant differences in age, weight, ASA status and surgery time between LSCA and SSCA group.
• Anesthesia time was shorter in LSCA group comparing to SSCA group.
• The mean sevoflurane concentration, peak sevoflurane concentration and MAC-hours in LSCA group were significantly lower than SSCA (Table 1).

Conclusion:
• LSCA technique can effectively decrease the dose of sevoflurane used for adenoidectomy and/or tonsillectomy.
• A future prospective randomized clinical trial is required to confirm the safety and efficacy of the LSCA technique.

Reference: