Variation in the intracuff pressure in cuffed endotracheal tubes during cardiac surgery in infants and children

Archana S. Ramesh, Hiromi Kako, Senthil G. Krishna, Sarah Khan, Aymen Naguib, Joseph D. Tobias
Department of Anesthesiology & Pain Medicine, Nationwide Children’s Hospital, Columbus, Ohio

Background:
- Recent studies have shown that cuffed endotracheal tubes (cETT) can be used safely in pediatric patients.
- However, various factors may affect the intracuff pressure (CP) during prolonged surgical procedures.
- The relative hypotension seen during cardiopulmonary bypass (CPB) can be an additional concern especially in pediatric patients with unmonitored and inflated cuffs.
- In this study, we monitored the CP continuously in infants and children subjected to CPB.

Methods:
- IRB approved.
- Prospective, observational clinical study.
- Inclusion criteria:
 - Patients undergoing cardiac surgery with CPB
- No change in our standard anesthetic care:
 - After placement of the cETT, the cuff was inflated using the air-leak test with a CPAP of 20 cmH₂O in the anesthesia circuit
 - The inflating port of the pilot balloon was connected to the TD of the IPMS
 - The CP, body temperature, and MAP were recorded every 30 minutes

Result
- The study cohort consisted of 17 patients.
- Mean CP at inflation of the cuff: 13.0 ± 6.8 cmH₂O
- Over time, the change in CP from baseline:
 - 0.1 ± 4.3 at a body temperature of 35-37°C
 - -4.9 ± 2.6 cmH₂O (p<0.01) at 31-33°C
 - -10.6 ± 5.4 cmH₂O (p<0.01) at 27-29°C
 - -13.2 ± 4.9 cmH₂O (p<0.01) at <27°C
 With normalization of body temperature (36-37°C), CP returned back to baseline (mean difference of -0.3 cmH₂O from the initial CP).

Discussion
- The CP in a cETT is influenced by multiple intraoperative factors - temperature, N₂O and the position of the head and neck.
- The current study revealed a linear decrease in the CP with decrease in temperature during CPB followed by a return of the CP to baseline as the temperature normalized.
- This variability of the CP and its multi-factorial dependence suggest that continuous monitoring of CP may be beneficial in this patient population.

Measurement

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>8 days to 6.6 years (1.5 ± 1.8 years)</td>
</tr>
<tr>
<td>Weight</td>
<td>3.3 to 22.5 Kgs (8.2 ± 4.9 Kgs)</td>
</tr>
<tr>
<td>Size of the cuffed ETT</td>
<td>3.0mm – 5.0 mm ID</td>
</tr>
</tbody>
</table>

Change in CP (cm H₂O)

<table>
<thead>
<tr>
<th>Body temperature (°C)</th>
<th>Change in CP (cm H₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-37°C</td>
<td>0.1</td>
</tr>
<tr>
<td>31-33°C</td>
<td>4.9</td>
</tr>
<tr>
<td>25-27°C</td>
<td>10.6</td>
</tr>
<tr>
<td><25°C</td>
<td>13.2</td>
</tr>
<tr>
<td>36-37°C</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

References