

Carbon Monoxide: Toxicity and Potential Therapeutic Agent

Richard J. Levy, M.D.

Director, Cardiac Anesthesia Vice Chief, Division of Anesthesiology and Pain Medicine Children's National Medical Center Associate Professor of Anesthesiology and Critical Care Medicine, Pediatrics, and Information Systems Biology

No conflicts of interest to disclose

Carbon monoxide is a colorless, odorless, and tasteless gas

Carbon Monoxide

Leading cause of poison-related mortality in the United States 20,000 ER visits/year > 2000 hospitalizations/year ~ 6000 deaths/year

Kao LW, Nañagas KA. (2005). Med Clin N Am 89:1161-1194.

Iqbal S, Clower JH, Hernandez SA, Damon SA, Yip FY. (2012). Am J Public Health. 102:1957-63 Centers for Disease Control and Prevention (CDC). (2008). MMWR Morb Mortal Wkly Rep. 57:896-899.

Exogenous CO

Generated by incomplete combustion of carbonaceous fuels

Environmental Sources

Outdoor sources Vehicle exhaust

Indoor sources Tobacco Gas cooking ranges Space heaters Coal and wood burning stoves Generators

PO₂ (mm Hg)

WebMD.com Ernst A et al. NEJM 1998

Queiroga CSF et al. Biochemistry Research International. 2012

Coburn-Forster-Kane Model

$$\frac{d[COHb]_{t}}{dt} = \frac{\dot{V}_{CO}}{V_{b}} + \frac{1}{V_{b}\beta} \left(P_{I}CO - \frac{[COHb]_{0}P_{\bar{c}}O_{2}}{[O_{2}Hb]M}\right)$$

CO in atmosphere (ppm)	COHb in blood (%)	Signs and symptoms		
10 70	2 10	Asymptomatic No appreciable effect, except shortness of breath on vigorous exertion; possible tightness across the forehead; dilation of cutaneous blood vessels.		
120	20	Shortness of breath on moderate exertion; occasional headache with throbbing in temples		
220	30	Decide headache; irritable; easily fatigued; judgment disturbed; possible dizziness; dimness of vision.		
350 - 520	40 – 50	Headache, confusion; collapse; fainting on exertion		
800 - 1220	60 – 70	Unconsciousness; intermittent convulsion; respiratory failure, death if exposure is long continued		
1950	80	Rapidly fatal		

http://www.theaa.com/insurance/carbon-monoxide-gas-safety.html

CO Policy

Outdoor environment - Law 1970 US Clean Air Act 1971 EPA National Ambient Air Quality Standard 9 ppm CO for 8 hours 35 ppm CO for 1 hour

Indoor environment - Guidelines OSHA 50 ppm CO for 8 hours NIOSH 35 ppm CO for 8 hours (ceiling of 200 ppm)

US Environmental Protection Agency, 2012

CO production within anesthesia breathing circuits was first reported in 1990

Moon RE, el al; Anesthesiology. 1990;73:A109.

Figure 1 Simplified mechanism of carbon monoxide (CO) formation from desflurane (Baxter); the source of CO is the –CF₂ moiety. Mean peak and median carbon monoxide concentration [CO] in parts per million of the two consecutive experiments for each desiccated carbon dioxide absorbent used in combination with desflurane 3.0 vol%.

CO ₂ absorbent	Peak [CO]	Median [CO]		
Medisorb®	13,317	2979		
Spherasorb®	9045	2273		
Loflosorb®	525	318		
Superia®	32	20		
Amsorb®	0	0		
Lithium hydroxide	0	0		

Significant differences were found between the 36 median carbon monoxide (CO) concentrations of all absorbents (Kruskall Wallis: P < 0.001) except for comparison between Medisorb[®] – Spherasorb[®] (Mann–Whitney *U* test: P = 0.121) and Amsorb[®] – LiOH (Mann–Whitney *U* test: P = 1.000).

	Duration of anesthetic administration						
Temperature (°C)	Desflurane		Enflurane		Isoflurane		
	2 h	4 h	2 h	4 h	2 h	4 h	
Soda lime, dry				·	. <u> </u>		
25°C	891	572	1150	744	296	183	
35°C	1800	1080	1470	923	349	231	
45°C	2490	1470	2200	1320	455	292	
Soda lime, 1.4% water							
35°C	26^a	26^a	46	57	23	23	
45°C	58ª	80ª	100	129	104	104	
Baralyme [®] , dry							
25°C	9730	5980	3760	2440	606	549	
35°C	11600	7180	4930	3680	851	907	
45°C	15200	9310	10100	3780	919	1030	
Baralyme®, 1.6% water							
25°C	4100	2760	3170	2200	578	575	
35°C	5910	3910	3640	2610	725	766	
45°C	7480	4730	4340	3430	871	896	
Baralyme®, 3.2% water							
45°C	1410	1220	1430	1100	678	636	
Baralyme [®] , 4.7% water							
45°C	238	247	379	374	237	363	

Table 1. Average Concentrations (ppm/min) of CO Produced by 21–25 g of Soda Lime or Baralyme® Acting on 4% Desflurane, 1.2% Enflurane, or 1.0% Isoflurane Flowing at 12.5 mL/min Through the Absorbent

Baralyme® is from Allied Healthcare Products, Inc., St. Louis, MO.

4 5% desflurane.

Fang ZX, el al; Anesth Analg 1995;80:1187-93

Levy RJ et al. Anesth Analg. 2010 Mar;110(3):747-53.

Levy RJ et al. Anesth Analg. 2010 Mar;110(3):747-53.

Levy RJ et al. Anesth Analg. 2010 Mar;110(3):747-53.

CO is produced endogenously as well

CO measurements every 5 minutes in breathing circuitIow-flow anesthesiahigh-flow anesthesiaFGF:Ve = 0.5FGF:Ve = 1

В

Nasr et al. BJA. 2010 105(6):836-41.

Nasr et al. BJA. 2010 105(6):836-41.

Nasr et al. BJA. 2010 105(6):836-41.

Low dose CO has cellular protective properties

Bauer I. Crit Care. 2009;13(4):220

Neuronal death and patterning in the developing brain

Vanderhaeghen P, Cheng HJ. Cold Spring Harb Perspect Biol. 2:a001859, 2010

Vanderhaeghen P, Cheng HJ. Cold Spring Harb Perspect Biol. 2:a001859, 2010

Cheng Y et al. PlosONE. 2012; 7:e32029

cytosol

Bax

Cheng Y et al. PlosONE. 2012; 7:e32029

Cheng Y et al. PlosONE. 2012; 7:e32029

*P<.05 vs. 0 ppm *P<.02 vs. 0 ppm

Cheng Y et al. PlosONE. 2012; 7:e32029

Reference memory is impaired

Memory retention is impaired

Mechanism of anesthesia-induced neurotoxicity

Olney JW, et al. Anesthesiology. 101:273-5, 2004.

Can inspired CO prevent anesthesia-induced neuronal apoptosis in the developing brain?

Cytochrome c peroxidase activity

Cheng Y and Levy RJ. Anes Analg 2014; 118(6):1284-92

*P < .05 vs. 0 ppm CO –isoflurane. †P < .01 vs. 0 ppm CO –isoflurane. #P < .05 vs. 5 ppm CO +isoflurane. ‡P < .001 vs. 0 ppm CO –isoflurane. *P < .01 vs. 0 ppm CO and 5 ppm +isoflurane. @P< .01 vs. 5 ppm CO –isoflurane.

Cheng Y and Levy RJ. Anes Analg 2014; 118(6):1284-92

- Oneng T and Levy NJ. Anes Analy 2014, 110(0).1204-32

Hippocampus

□ 0 ppm	
🗆 0 ppm + iso	
🖬 5 ppm +iso	
100 ppm +iso	

*P < .05 vs. 0 ppm CO -isoflurane. †P < .01 vs. 0 ppm CO -isoflurane. $^{P} < .001$ vs. 0 ppm CO -isoflurane. @ P < .05 vs. 0 ppm CO +isoflurane. ‡P < .01 vs. 0 ppm CO +isoflurane. #P < .001 vs. 0 ppm CO +isoflurane. \$P < .05 vs. 5 ppm CO +isoflurane.

> Cheng Y and Levy RJ. Anes Analg 2014; 118(6):1284-92

TUNEL

Isoflurane

Cheng Y and Levy RJ. Anes Analg 2014; 118(6):1284-92

Hypothalamus/Thalamus

□ 0 ppm	
🗆 0 ppm + iso	
🖬 5 ppm +iso	
🛯 100 ppm +iso	

*P < .05 vs. 0 ppm CO -isoflurane. †P < .01 vs. 0 ppm CO -isoflurane. ^P < .001 vs. 0 ppm CO -isoflurane. @ P < .05vs. 0 ppm CO +isoflurane. $\ddagger P < .01$ vs. 0 ppm CO +isoflurane. % P < .05 vs. 5 ppm CO -isoflurane. & P < .01 vs.

5 ppm CO –isoflurane.

P < .05 vs. 5 ppm CO +isoflurane.

?P < .05 vs. 100 ppm CO –isoflurane.

Cheng Y and Levy RJ. Anes Analg 2014; 118(6):1284-92

Inspired CO may limit and prevent isofluraneinduced neuronal apoptosis in the developing brain and may prevent anesthesia-mediated effects on memory and learning

PANDA cohort (Sun LS, et. al.)

10 patients underwent general inhalational anesthesia for urologic surgery

Identified with detailed OR records FGF (oxygen, nitrous oxide, air) TV, RR (minute ventilation)

9 males, 1 female 5 mo – 2 years of age 6.9 – 13.6 kg

IQ difference from sibling related to FGF:Ve

IQ difference from sibling related to FGF:Ve

Performance IQ

IQ difference from sibling related to FGF:Ve

Low-flow anesthesia targeting mild CO-rebreathing and subclinical CO exposure may prevent and inhibit anesthesia-induced neurotoxicity

Acknowledgements:

Lena S. Sun, MD Meredith Kato, MD Ying Cheng Adia Thomas Zena Quezado, MD Li Wang, PhD **Rod Eckenhof** MD Maryellen Eckenhoff Feras Mardini

Junxia Tang

Viviane Nasr, MD **Ozzie Rivera** Nina Deutsch, MD Michael Slack, MD Joshua P. Kanter, MD Kanishka Ratnayaka, MD Renee Roberts, MD **Richard F. Kaplan, MD** Francis X. McGowan Jr, MD Jun Peng Shannon Bianchi, MD Huafeng Wei, MD

Funding sources: CTSI-CN, FRAXA, NIH R01GM103842