Effect of High Dose Dexmedetomidine-Ketamine Sedation on Respiratory Function and PVR in Children with Congenital Heart Disease

Steven Fishburn MS II, Joyce Phillips, MD FAAP
The University of New Mexico Children’s Hospital, Albuquerque NM

Introduction

- Children undergoing cardiac catheterization require anesthesia or sedation.
- The results of cardiac catheterization can be improved by using adequate sedation.
- Accurate measurement of pulmonary vascular resistance (PVR) is required.
- Dexmedetomidine, a selective alpha 2 agonist, has been used in high doses to sedate children without causing respiratory depression.
- Controversy exists regarding the effect of dexmedetomidine on PVR.
- Ketamine, in combination with low dose dexmedetomidine, has been effective in sedating children for catheterization.
- At the University of New Mexico, we use a combination of high dose dexmedetomidine and ketamine to sedate children for cardiac catheterization.

Purpose

- To review the effect of high dose dexmedetomidine-ketamine sedation in children undergoing cardiac catheterization on the following:
 - Spontaneous ventilation
 - Respiratory parameters (pH, pCO2, pO2)
 - Pulmonary vascular resistance

Methods

- Institutional IRB approval
- Retrospective chart review of all children undergoing cardiac catheterization with high dose dexmedetomidine-ketamine sedation at the University of New Mexico over an 18 month period.
- Patients excluded if other anesthetic/sedation used
- Chart review included: age, weight, cardiac defect, purpose of catheterization, preoperative medications, FIO2, respiratory parameters, blood gas measurements, PA pressures, PVR, drug dosages and adequacy of sedation.
- Evaluation of pulmonary function based on arterial blood gas information and respiratory rate.
- Evaluation of PVR based on pulmonary artery pressures and Woods units.

Results

- A total of 17 charts met the requirements for review.
 - Patients ranged in age from 6 weeks to 9 years.
 - The majority of patients were 4 years and under.
 - All sedation done with spontaneous ventilation.
 - pCO2 measurements ranged from 35-56.
 - Average pCO2 value 43.
 - Dexmedetomidine bolus ranged from 0 – 7.3 mcg/kg.
 - Average bolus dose was 2 mcg/kg.
 - Dexmedetomidine infusion ranged from 1.6 – 4.4 mcg/kg/h.
 - Average infusion dose was 2.3 mcg/kg/hr.
 - Ketamine doses ranged from 1.15 – 10 mg/kg.
 - Average Ketamine dose was 3.3 mg/kg.
 - PVR measurements ranged from 1.2 – 4.4 Woods units.
 - 2 of 3 patients with PVR > 2.1 were on Enalapril and had unbalanced AV canal.
 - Both patients responded favorably to either oxygen or NO.
 - There was minimal correlation between higher doses of dexmedetomidine or ketamine and increased PVR.

Discussion

- We report the use of high dose dexmedetomidine with ketamine for children undergoing cardiac catheterization.
 - This technique provides effective sedation and maintains spontaneous ventilation.
 - Doses used showed a wide range of variation. We attribute this to multiple anesthetic providers and lack of protocol standardization.
 - Patients receiving higher doses of Dexmedetomidine required less supplemental ketamine. All doses showed similar results with regard to pulmonary function.
 - There is minimal correlation between PVR and doses of dexmedetomidine + ketamine.
 - Two patients exhibited markedly increased pulmonary vascular resistance.
 - Both of these patients had preexisting pulmonary hypertension.
 - It is unlikely that these measures were related to sedation technique.

Conclusions

- The use of high dose dexmedetomidine-ketamine provides adequate sedation for cardiac catheterization.
- Respiratory function is preserved in the spontaneously breathing patient.
- Observed values of PVR using this sedation technique were in the expected and acceptable range in the majority of cases.
- Further studies with standardization of protocol are required.

References