The Myth of the Third Space

PEGGY P. MCNAULL, MD
ASSISTANT PROFESSOR, ANESTHESIOLOGY AND PEDIATRICS
UNIVERSITY OF NORTH CAROLINA
Objectives

- Discuss the origins of IV fluid therapy in children
- Debate the existence of a third space
- Discuss IV fluid therapy and the risks of postoperative hyponatremia
Intravenous therapy – a historical perspective

- 1613 Harvey described the circulatory system
- Mid 1600s Wren and Boyle designed the first “hypodermic” needle
- 1662 Major injected the first medicinal substance intravenously
- 1667 Lower performed the first blood transfusion with lamb blood
Intravenous therapy – a historical perspective

- 1818 Blundell performed first human to human blood transfusion
- 1831 O’Shaughnessy published landmark article in Lancet about fluid and solute deficits in cholera victims
- 1832 Latta reported that he had successfully resuscitated numerous moribund cholera patients with intravenous water and salts
Intravenous therapy – a historical perspective

- 1918 Blackfan and Maxcy instilled 0.8% saline intraperitoneally to dehydrated infants
- 1931 Karellitz and Schick administered D5NS or D5LR intravenously via continuous infusion to dehydrated infants
- 1957 Holliday and Segar described the first practical method for the prescription of IV fluids
The goals of perioperative intravenous fluid therapy
- Replace preoperative deficits
- Provide maintenance fluid therapy
- Replace ongoing blood loss
- Replace insensible losses
- Replace third space losses
The third space – fact or fiction

Hey!
Have you seen the Third space?
The third space - defined

- Refers to sequestration of fluid in a non-functional extracellular space that is beyond osmotic equilibrium with the vascular space.
The third space – pediatric literature

Perioperative fluid therapy in pediatrics
Pediatric Anesthesia, 2008

• Third space losses
 • 1 ml/kg/hr for minor surgical procedures
 • 15-20 ml/kg/hr for major abdominal procedures
 • Up to 50 ml/kg/hr for surgery for necrotizing enterocolitis

• Children have a larger extracellular fluid volume
 • Neonates, ECV is 45% of body weight
 • 1 year old, ECV is 30% of body weight
 • Adults, ECV is 20% of body weight
The third space – fact or fiction

Acute change in extracellular fluids associated with major surgical procedures

Annals of Surgery, 1961

- 13 adults, elective major surgical procedures
- Plasma volume, red blood cell mass, and extracellular fluid volume (ECV) measured preoperatively and after two hours of operative time
- Loss of ECV (up to 28%), presumed from internal redistribution to the third space
- Extracellular fluid volume loss correlated with amount of observed surgical trauma
The third space – fact or fiction

- Extracellular volume determination via tracer technique
 - Requires suitable tracer
 - Requires appropriate equilibration time
 - Requires multiple samples
 - Requires steady state conditions
The third space – fact or fiction

- Few subsequent trials reported a third space loss during surgery or hemorrhagic hypotension
 - Utilized the sulfate 35SO$_4$ tracer to estimate fECV
 - Calculated fECV from a single or very few blood samples
 - Calculated fECV after short equilibration times
The third space – fact or fiction

- Numerous trials report an unchanged or increased fECV after surgery
 - Utilized different tracers (i.e. Bromide)
 - Calculated fECV from multiple blood samples
 - Calculated fECV after longer equilibration times
The third space - FICTION

- The classic “third space” has never been localized
- The classic “third space” does not exist
- Fluid is shifted within the functional extracellular fluid compartment, from the intravascular space to the interstitial space
Perioperative fluid shift - implications

- Does surgery and trauma cause the fluid shift?
- Does aggressive perioperative fluid therapy make the fluid shift worse?
- Does aggressive perioperative fluid therapy impact patient outcomes?
- Should we reevaluate our practice?
Perioperative fluid shift - implications

Extracellular fluid volume expansion and third space sequestration at the site of small bowel anastomoses

British Journal of Surgery, 1983

- **Water content of enteral anastomosis measured in rabbits**
- **Group 1**
 - Received no IV fluid therapy
 - Interstitial water load increased by 5-10%
- **Group 2**
 - Received 5 mL/kg/hr intraoperatively of crystalloid infusion
 - Interstitial water load double that of Group 1
Perioperative fluid shift - implications

- Surgical trauma increases the protein permeability of the vascular endothelium
 - Mechanical stress
 - Endotoxin exposure
 - Ischemia-reperfusion injury
 - Inflammation
- Acute hypervolemia from liberal fluid therapy alters the endothelial glycocalyx
Effects of intravenous fluid restriction on postoperative complications:
Comparison of two perioperative fluid regimens

Annals of Surgery, 2003

- 141 adult patients, major colorectal surgery

<table>
<thead>
<tr>
<th></th>
<th>Restricted regimen</th>
<th>Standard regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidural</td>
<td>No preloading</td>
<td>500 ml HAES 6%</td>
</tr>
<tr>
<td>Loss to third space</td>
<td>No replacement</td>
<td>Replaced by NaCl 0.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 ml/kg first hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 ml/kg hours 2 and 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 ml/kg following hours</td>
</tr>
<tr>
<td>Insensible losses during fast</td>
<td>500 ml glucose 5% - oral intake the previous 6 hours</td>
<td>500 ml NaCl 0.9%</td>
</tr>
<tr>
<td>Blood loss</td>
<td>Volume to volume with HES 6%</td>
<td>≤ 500 ml: 1000–1500 NaCl 0.9%</td>
</tr>
<tr>
<td></td>
<td>Blood component therapy started at loss >1500 ml</td>
<td>> 500 ml: additional HES 6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blood component therapy started at loss >1500 ml</td>
</tr>
</tbody>
</table>
Perioperative fluid shift - implications

Effects of intravenous fluid restriction on postoperative complications: Comparison of two perioperative fluid regimens

Annals of Surgery, 2003

- Restricted group: significant reduction in postoperative complications such as anastomotic leakage, pulmonary edema, pneumonia, and wound infection
Postoperative hyponatremia

Case
- 10 yo male trauma patient
- Intubated for respiratory distress
- Peri-intubation aspiration noted
- To OR for left foot ORIF
- 4 days mechanical ventilation for aspiration PNA
- Surgical team prescribed D5 ½ NS post transfer to floor
- Rapid response for acute mental status changes
- Tonic-clonic seizure while in the CT scanner
- Serum Na 116
Postoperative hyponatremia

- Children are at greater risk for cerebral edema
 - Difference in the ratio of intracranial capacity to brain size
 - CSF fluid volume relatively smaller
 - Brain intracellular concentration of sodium 27% higher
Postoperative hyponatremia

What is the cause?

- Retention of free water and excretion of hypertonic urine in the presence of increased ADH

<table>
<thead>
<tr>
<th>Hemodynamic stimuli</th>
<th>Nonhemodynamic stimuli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypovolemia - vomiting, diarrhea, diuretics, renal salt wasting, hypoaldosteronism</td>
<td>CNS disturbances - meningitis, encephalitis, stroke, brain abscess, head injury, hypoxic brain injury</td>
</tr>
<tr>
<td>Hypervolemia - nephrosis, cirrhosis, congestive heart failure, hypoalbuminemia</td>
<td>Pulmonary diseases - pneumonia, asthma, tuberculosis, empyema, COPD, bronchiolitis, ARF</td>
</tr>
<tr>
<td>Hypotension</td>
<td>Cancers - lung, brain, CNS, head, neck, breast, GI tract, GU tract, leukemia, lymphoma, thymoma, and melanoma</td>
</tr>
<tr>
<td></td>
<td>Medications - cyclophosphamide, vincristine, morphine, SSRIs, carbamazepine</td>
</tr>
<tr>
<td></td>
<td>Other - nausea, emesis, pain, stress, postoperative state, cortisol deficiency</td>
</tr>
</tbody>
</table>
Postoperative hyponatremia

What is the cause?
- Administration of hypotonic fluids

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Na⁺ mEq/L</th>
<th>Cl⁻ mEq/L</th>
<th>Tonicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactated Ringers</td>
<td>130</td>
<td>109</td>
<td>Hypotonic (slightly)</td>
</tr>
<tr>
<td>Normal Saline (NS)</td>
<td>154</td>
<td>154</td>
<td>Isotonic</td>
</tr>
<tr>
<td>D5W</td>
<td>0</td>
<td>0</td>
<td>Hypotonic</td>
</tr>
<tr>
<td>D5 ¼ NS</td>
<td>34</td>
<td>34</td>
<td>Hypotonic</td>
</tr>
<tr>
<td>D5 ½ NS</td>
<td>77</td>
<td>77</td>
<td>Hypotonic</td>
</tr>
</tbody>
</table>
Postoperative hyponatremia

Inappropriate secretion of antidiuretic hormone in a postsurgical pediatric population

Critical Care Medicine, 1983

- 24 postoperative pediatric patients from spinal fusion
- 20 patients received hypotonic fluids postoperatively
 - Serum sodium dropped 6.2 +/- 2.9 mEq/L
 - 5 patients developed SIADH
- 4 patients received isotonic fluids postoperatively
 - Serum sodium dropped 3.0 +/- 0.8 mEq/L
Hospital-acquired hyponatremia in postoperative pediatric patients: Prospective observational study

Pediatric Critical Care Medicine, 2010

- 81 postoperative pediatric patients
- Prescribed hypotonic maintenance fluids (Na 40 mmol/L) per Holliday and Segar method
- Incidence of hyponatremia 21% at 12 hours and 31% at 24 hours
Postoperative hyponatremia

Prevention of hyponatremia during maintenance intravenous fluid administration: A prospective randomized study of fluid type versus fluid rate

The Journal of Pediatrics, 2010

- 124 postoperative pediatric patients
- 0.9% NS or 0.45% NS at 100% or 50% maintenance rates
- ADH concentration increased similarly across all groups
- Serum sodium decreased > 2 mmol/L in greater than 50% of the 0.45% groups versus 20% in the 0.9% groups
- The incidence of hyponatremia was not influenced by fluid rate
- No hypernatremia was observed in either group
Postoperative hyponatremia

National Patient Safety Agency
Patient safety alert 22: Reducing the risk of hyponatremia when administering IV infusions to children

- Safety alert called for the removal of all sodium chloride 0.18% with glucose 4% intravenous infusions from stock and general use in areas that treat children.
- The use of intravenous hypotonic solutions puts children at a greater risk of developing life-threatening hyponatremia than other types of fluid and should be prescribed with caution. All children are at risk. Wherever possible, carefully managed oral fluids are preferable to intravenous fluid therapy.
- Hyponatremia can develop within a short time frame. A robust fluid monitoring regime is essential.
- Intravenous fluids should be prescribed with the same rigor as other prescription medicines, particularly in respect of the volume given.
- Hyponatremic encephalopathy is a medical emergency and should be treated using hypertonic intravenous fluids under senior medical supervision.
Hospital-Acquired Hyponatremia: Why are there still deaths?

Commentary, Pediatrics, 2004

- The current practice of prescribing hypotonic maintenance fluids in children is unsafe and should be abandoned.
- The administration of IV fluids should be considered an invasive procedure, and all hospitalized patients should be considered at risk for developing hyponatremia.
- Although no one parenteral fluid can be administered safely to all children, isotonic saline would seem to be the safest fluid for most children.
Conclusions

- The classic third space does not exist
- Intravenous fluid therapy should be goal directed
- Hypotonic intravenous therapy should be avoided in the postoperative pediatric patient
- Postoperative patients on maintenance intravenous therapy should have frequent electrolyte analysis
References